BUSSTEPP Homework 3:

More Exercises on Numerical Quantum Mechanics Other Exercises

September 2, 2003

1 Numerical Exercises

1.1 Harmonic Oscillator

We continue with the harmonic oscillator,

$$V(x) = \frac{1}{2}m\omega^2 x^2,\tag{1}$$

$$S = ma \left\{ \sum_{i=0}^{N-1} \frac{1}{2} [x_{i+1} - x_i)/a]^2 + \frac{1}{2} (\omega a)^2 (x_i/a)^2 \right\}.$$
 (2)

Exercise III.1: Run with the parameters in Table 1 to vary the lattice spacing. Plot E_1 , E_2 , and E_2/E_1 vs. a. Verify also that the energies do not depend on m. Results are in Fig. 1.

Explain the striking constancy of $E_2/E_1 = 2$.

Solution III.1: The canned programs require somewhat different input (a, τ, N) :

a	0.5	1	2	4	8
τ/π	2	2	2	2	2
$\stackrel{'}{N}$	128	64	32	16	8

Make a directory for each parameter set, with appropriate input files, abtain E_1 and E_2 from effective masses.

Because the system is quadratic, we can solve for all eigenvalues of the transfer operator. First set $x = q\sqrt{a/m}$, which scales m out of the problem. The transfer operator:

$$(\hat{\mathbb{T}}\Psi)_n(q_{t+1}) = \int \frac{dq_t}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left[1 + \frac{1}{2}(\omega a)^2\right]q_{t+1}^2 + q_{t+1}q_t - \frac{1}{2}\left[1 + \frac{1}{2}(\omega a)^2\right]q_t^2\right\}\Psi(x_t)$$

The simple harmonic oscillator has wave functions

$$\Psi_n(q) = \mathcal{N}_n e^{\alpha^2 q^2} \int \frac{du}{\sqrt{2\pi}} u^n e^{-\frac{1}{2}u^2 + 2i\alpha uq},$$

Table 1: Parameters for exploring the dependence on a.

ma	0.5	1	1.5	2	3
ωa	0.5	1	1.5	2	3
N	128	64	44	32	22

Figure 1: E_1 and E_2 vs. lattice spacing a. The points are Monte Carlo simulation. The lines are the exact solution at non-zero a.

choosing an integral representation, because we have \mathbb{T} in an integral representation. For now α is not known. A straightforward, but tedious, manipulation of Gaussian integrals shows that Ψ_n is an eigenfunction of $\hat{\mathbb{T}}$ with eigenvalue

$$\mathbb{T}_n = e^{-(n + \frac{1}{2})Ea},$$

where

$$\cosh(Ea) = 1 + \frac{1}{2}(\omega a)^2 \qquad \Rightarrow \qquad Ea = 2\sinh^{-1}(\frac{1}{2}\omega a).$$

One finds that this works out if $\alpha^2 = 2\sinh(Ea)$.

Thus, all the discretization effect can be absorbed into a redefinition of the frequency.

1.2 Anharmonic Oscillator

Now add an anharmonic term

$$V(x) = \frac{1}{2}m\omega^2 x^2 + \lambda x^4,\tag{3}$$

$$S = ma \left\{ \sum_{i=0}^{N-1} \frac{1}{2} [x_{i+1} - x_i)/a]^2 + \frac{1}{2} (\omega a)^2 (x_i/a)^2 + (\lambda a^5/ma)(x_i/a)^4 \right\}. \tag{4}$$

From first-order perturbation theory

$$E_n = n\omega \left(1 + \frac{3\lambda(n+1)}{2m^2\omega^3} \right) \tag{5}$$

so the correction is small if $\lambda \ll m^2 \omega^3$. The energies as a function of λ are shown in Fig. 2

Exercise III.2: Compute the energies E_1 and E_2 as a function of λ at a lattice spacing so that discretization effects are small. Start with λ small enough so that perturbation theory should be accurate, but extend into the non-perturbative regime.

Solution III.2: My result used $ma = \omega a = 1$ and λa^5 .

1.3 Double-well Oscillator

The exercise in this subsection uses the potential

$$V(x) = -\frac{1}{2}m\omega^2 x^2 + \lambda x^4 \tag{6}$$

Note the minus sign in front of the quadratic term. There are two minima. Now the first excited state is almost degenerate with the ground state.

Exercise III.3: Return to the program that compute x_{avg} as a function of c. Plot them vs. c. Explain the behavior of x_{avg} , Fig. ??.

Solution III.3: So far I have not found a set of simulation parameters such that the system switches back and forth. If you find some, e-mail ask@fnal.gov

Figure 2: E_1 and E_2 vs. anharmonicity λ , in lattice units.

2 Other Exercises

The Standard Yukawa interactions of quarks are

$$\mathcal{L}_Y = -\sum_{i,j=1}^G \left[\hat{y}_{ij}^d \bar{Q}_L^i \phi D_R^j + \hat{y}_{ij}^u \bar{Q}_L^i \tilde{\phi} U_R^j + \text{h.c.} \right], \tag{7}$$

with hypercharges $Y_U = 2/3$, $Y_D = -1/3$, $Y_Q = 1/6$.

Exercise III.4: What must the hypercharge of the Higgs doublet(s) be?

Solution III.4:

$$Y_{\phi} = 1/3 + 1/6 = 1/2$$

 $Y_{\tilde{\phi}} = -2/3 + 1/6 = -1/2$

In continuum gauge theories the parallel transporter (or Wilson line) is defined to be

$$U(x,y) = \mathsf{P}\exp\left(\int_{y}^{x} dz \cdot A\right). \tag{8}$$

Exercise III.5: Show that $U(x,y) \to g(x)U(x,y)g^{-1}(y)$ under gauge transformations.

Solution III.5: The proof is immediate for an infinitesimally short path. Any path can be built out of short paths, by definition of the path-ordering symbol.

The Wilson plaquette action is

$$S = \frac{\beta}{2N} \sum_{x,\mu,\nu} P_{\mu\nu}(x) \tag{9}$$

where

$$P_{\mu\nu} = \text{Re}\,\text{tr}[1 - U_{\mu}(x)U_{\nu}(x + ae^{(\mu)})U_{\mu}^{\dagger}(x + ae^{(\nu)})U_{\nu}^{\dagger}(x)]. \tag{10}$$

Exercise III.6: Show that the plaquette action reduces to the Yang-Mills action when $a \to 0$.

Solution III.6: It is convenient to focus on a single $\mu\nu$ plaquette, located (for convenience) at the origin 0. Choose a gauge so that $A_{\nu}(x) = 0$. Fix the gauge further so that on the hypersurface $x_{\nu} = 0$ $A_{\mu}(x) = 0$ too. Then

$$P_{\mu\nu}(0) = \text{Re}\,\text{tr}[1 - U_{\mu}^{\dagger}(ae^{(\nu)})] = \text{Re}\,\text{tr}\{1 - P\exp[-a\int_{0}^{1}A_{\mu}(sae^{(\nu)})ds]\}$$

Now in this gauge

$$A_{\mu}(sae^{(\nu)}) = A_{\mu}(0) + sa\partial_{\nu}A_{\mu} = sa\partial_{\nu}A_{\mu}$$

because $A_{\mu}(0) = 0$ when $x_{\nu} = 0$. The first term to survive the trace is the second order in $sa\partial_{\nu}A_{\mu}$:

$$P_{\mu\nu}(0) = -a^4 \text{Re} \operatorname{tr}\left[\frac{1}{2}(\partial_{\nu}A_{\mu}(0))^2\right] = -a^4 \frac{1}{2} \operatorname{tr}\left[(F_{\nu\mu}(0))^2\right]$$

The last equality holds in our gauge $F_{\nu\mu}(0) = \partial_{\nu}A_{\mu}$. Since the left-most and right-most expressions are both gauge invariant, they hold in all gauges.

Next repeat for all plaquettes, yielding

$$P_{\mu\nu}(x) = -a^4 \frac{1}{2} \operatorname{tr}[(F_{\nu\mu}(x))^2] = +\frac{1}{4} \sum_a (F_{\mu\nu}^a)^2$$

no sum on $\mu\nu$. With my convention for the generators ${\rm tr}[t^at^b]=-\frac{1}{2}\delta^{ab}.$

Thus

$$\sum_{x,\mu,\nu} P_{\mu\nu}(x) = a^4 \sum_x \frac{1}{4} (F^a_{\mu\nu}(x))^2 = \int d^4x \frac{1}{4} (F^a_{\mu\nu}(x))^2$$

with summation conventions on the right-hand side. Normalization indentifies $\beta/2N = 1/g_0^2$.